
3	Project	Plan	 
3.1	PROJECT	MANAGEMENT/TRACKING	PROCEDURES	 

Our	project	uses	a	hybrid	management	style,	utilizing	both	waterfall	and	agile	development	strategies.	This	
has	allowed	us	to	plan	out	the	entire	project	broadly,	then	use	agile	development	strategies	to	focus	on	
week-to-week	goals	to	meet	broad	deadlines.	To	achieve	these	goals,	we	are	using	Git	to	manage	our	code	
and	tracking	issues	using	Gitlab	Issues.	We	are	also	meeting	weekly	with	our	client,	Boeing,	to	make	sure	
that	we	are	on	the	right	track	and	that	they	are	happy	with	our	progress.	These	strategies	allow	us	to	make	
consistent	progress	and	track	where	we	are	relative	to	our	goals.	

	 

3.2	TASK	DECOMPOSITION	 

We	divided	our	project	into	major	parts,	then	subdivided	those	parts	into	smaller	parts	that	can	be	taken	
care	of	by	one	or	two	people.	This	strategy	integrates	well	with	our	management	and	tracking	procedures.	
Below	is	a	chart	of	the	tasks	that	we	broke	the	project	into.	

 
	Figure	1:	Task	Decomposition	Chart.	

	

3.3	PROJECT	PROPOSED	MILESTONES,	METRICS,	AND	EVALUATION	CRITERIA	 

Metrics/Evaluation	Criteria:	
• Technical	metrics:		

o Tool	suite	generates	interference	on	all	aspects	of	the	hardware	platform	
§ Cache,	memory,	I/O	buses,	SIMD	engines,	etc.	
§ Options	should	be	configurable	to	service	multiple	different	platforms	

o Worst-Case	Execution	Time	(WCET)	Criteria	
§ Perform	several	experiments	to	generate	interference	
§ Use	statistical	analysis	of	execution	time	to	determine	an	upper	bound	on	WCET	

o System	resource	usage	
§ Characterize	the	underlying	interference	channel	causing	the	WCET	

o Same	functionality	in	command-line	version	of	tool	suite	as	the	GUI	version	
• Usability	metrics:	



o Users	rate	appearance	and	usability	of	the	tool	suite	>	7	on	a	scale	of	[1	–	10]	
o Command-line	version	of	the	tool	suite	is	as	user	friendly	as	GUI	frontend	

Milestones:	
• Xen	hypervisor	is	functional	on	our	target	development	platform	
• Identify	resource	contention	points	on	our	target	platform	
• Tools	induce	some	amount	of	stress	on	the	identified	contention	points	
• Tools	thoroughly	induce	stress	on	the	identified	contention	points	
• Quantitatively	prove	mitigation	tools	improve	performance	of	the	system	while	contention	is	

underway	
• Obtain	a	worst-case	execution	time	for	our	system	
• Integration	of	testing	and	tools	into	one	unified	suite	

	
3.4	PROJECT	TIMELINE/SCHEDULE	 

	Figure	2:	Semester	1	Project	Timeline.	

For	semester	1,	we	have	several	deliverables	we	are	planning	on	targeting.	The	first	is	having	the	hypervisor	
functional,	task	“Verify	Xen	for	functionality	as	built”	in	the	chart	and	is	scheduled	for	April	5th.	The	second,	
identify	resource	contention	points	(yellow),	comes	shortly	after	as	we	do	research	on	the	board	while	
getting	it	set	up	and	is	targeted	for	April	11.	The	third	deliverable,	inducing	stress	on	the	identified	
contention	points,	should	be	finished	by	April	29th.		



Figure	3:	Semester	2	Project	Timeline.	

For	semester	two,	we	have	several	more	deliverables.	The	first	is	quantitatively	proving	that	our	mitigation	
techniques	improve	the	execution	time	of	our	base	case	programs,	which	will	happen	when	we	collect	the	
performance	data	on	September	10th.	From	there,	we	can	determine	a	bound	on	worst-case	execution	time	
for	our	system.	This	will	be	easiest	to	do	after	we	have	improved	the	suite’s	usability	(this	milestone	is	
targeted	for	October	9th),	so	we	estimate	that	it	should	be	completed	by	October	31st.		

	

3.5	RISKS	AND	RISK	MANAGEMENT/MITIGATION	 

Hardware	selection:	
• Find	compatible	dev	board	

o Risk:	we	struggle	to	find	a	board	that	meets	our	project’s	needs	
o Probability:	.80		
o Mitigation:	acquire	multiple	boards	(within	budget)	to	ideally	find	one	that	works	
o Mitigation:	we	can	emulate	a	hardware	environment	in	Linux	

• Xen	build	environment	
o Risk:	we	face	challenges	building	Xen	&	its	toolchain	for	our	platform	
o Probability:	.40	

• Verify	Xen	functionality	
o Risk:	Xen	&	and	its	toolchain	do	not	work	after	installation	
o Probability:	>	.90	
o Mitigation:	communicate	our	difficulties	to	our	client	to	get	unstuck	early	when	we	

encounter	issues	
• Create	Xen	build	scripts	

o Risk:	our	set	up	is	not	easily	replicable	/	portable	to	a	script	
o Probability:		<	.10	

• Risk:	the	selected	hardware	platform	is	incompatible	with	our	client’s	and	project’s	needs	
o Probability:	>	.80		

• Risk:	we	encounter	trouble	installing	Xen	on	our	hardware	platform	
o Probability:	>	.80	
o Mitigation:	communicate	our	work	and	where	we	are	block	to	the	Boeing	team	to	get	

unstuck	
Develop	Base	Cases:	

• Create	Cache	Base	Case:	
o Risk:	we	cannot	find	all	the	relevant	information	for	the	cache	for	our	given	platform	



o Probability:	.20	(we	specifically	chose	platforms	for	which	we	would	have	this	information)	
• Create	Memory	Base	Case:	

o Risk:	we	cannot	find	all	the	relevant	information	for	the	memory	configuration	for	our	
given	platform	

o Probability:	.20	(we	specifically	chose	platforms	for	which	we	would	have	this	information)	
• Create	I/O	Base	Case:	

o Risk:	we	cannot	find	all	relevant	information	for	the	I/O	characteristics	for	our	given	
platform	

o Probability:	.20	(we	specifically	chose	platforms	for	which	we	would	have	this	information)	
• Collect	Base	Case	Data:	

o Risk:	we	have	no	way	to	collect	relevant	metrics	on	the	researched	interference	channels	
o Probability:	.30	

Introduce	Resource	Contention:	
• CPU	Cores	(SIMD	Engine)	

o Risk:	properly	implementing	the	interference	generator	is	more	time	consuming	than	
originally	planned	

o Probability:	.60	
o Mitigation:	communicate	our	work	and	where	we	are	block	to	the	Boeing	team	to	get	

unstuck	
• Cache	Interference	

o Risk:	properly	implementing	the	interference	generator	is	more	time	consuming	than	
originally	planned	

o Probability:	.60	
o Mitigation:	communicate	our	work	and	where	we	are	block	to	the	Boeing	team	to	get	

unstuck	
• Main	Memory	Bandwidth	

o Risk:	properly	implementing	the	interference	generator	is	more	time	consuming	than	
originally	planned	

o Probability:	.60	
o Mitigation:	communicate	our	work	and	where	we	are	block	to	the	Boeing	team	to	get	

unstuck	
• I/O	bandwidth	

o Risk:	properly	implementing	the	interference	generator	is	more	time	consuming	than	
originally	planned	

o Probability:	.60	
o Mitigation:	communicate	our	work	and	where	we	are	block	to	the	Boeing	team	to	get	

unstuck	
• Collect	Interference	Data	

o Risk:	our	test	base	cases	do	not	adequately	stress	the	system	(i.e.,	demonstrate	WCET)	
o Probability:	.60	
o Mitigation:	we	can	use	our	client’s	expertise	in	the	given	domain	to	increase	the	likelihood	

that	our	test	cases	demonstrate	the	WCET	for	our	hardware	platform	
Introduce	Interference	Mitigation:	

• Cache	Coloring	
o Risk:	none	of	the	existing	cache	coloring	tools	work	for	our	project	
o Probability:	.20	(cf,	Stress-NG)	

• Cache	Locking	
o Risk:	we	have	no	method	of	enforcing	cache	locks	in	software	/	hardware	
o Probability:	.10		

• Memory	Bandwidth	Reservation	
o Risk:	none	of	the	existing	memory	reservation	tools	work	for	our	use	case	
o Probability:	.05	(cf,	MemGuard)	



• App-Specific	I/O	Mitigation	
o Risk:	the	I/O	behavior	of	applications	varies	widely,	and	it	will	be	hard	to	measure	
o Probability:	.60	
o Mitigation:	Get	input	from	our	client	on	what	applications	we	should	use	to	adequately	

mitigate	this	form	of	interference	
• Collect	Mitigation	Data	

o Risk:	we	are	not	able	to	accurately	measure	how	our	mitigation	methods	reduce	
interference	

o Probability:	.40	(simply	compare	metrics	with	interference	on	/	off)	
Unify	Tools	and	Stressors	into	One	Toolset:	

• Create	Open-Source	Repository	
o Risk:	we	are	not	able	to	create	a	public	repository	due	to	NDA	
o Probability:	>	.50	(?)	
o Mitigation:	we	need	to	communicate	with	both	Boeing	and	Iowa	State	University	early	on	

to	determine	which	parts	of	the	project	can	and	cannot	be	open-sourced	
• Create	Documentation	

o Risk:	development	of	the	project	was	not	continuously	documented,	and	knowledge	is	lost	
o Probability:	.60	
o Mitigation:	maintain	light	documentation	of	work	throughout	the	project	so	it	can	be	

expanded	on	during	this	stage	
• Improve	Usability	

o Risk:	our	tool	is	not	intuitive	to	use	for	knowledgeable	users	
o Probability:	.70	
o Mitigation:	perform	a	usability	study	with	our	Boeing	clients	to	improve	the	usability	of	

our	project	
• Automated	Scripts	

o Risk:		the	scripts	we	produce	are	not	able	to	be	reused	by	users	of	the	project	
o Probability:	.20	

Handoff:	
• Boeing	Approval	

o Risk:	Boeing	does	not	approve	the	handoff	of	our	project	due	to	NDA	
o Probability:	.30	

• Iowa	State	Approval	
o Risk:	Iowa	State	University	does	not	approve	the	open	sourcing	of	the	project	
o Probability:	.50	
o Mitigation:	Communicate	with	both	Boeing	and	Iowa	State	University	early	on	to	

determine	what	parts	of	the	project	can	be	open	sourced	
• Determine	Distribution	

o Risk:	there	is	no	platform	we	can	publish	our	project	on	or	no	license	that	applies	to	its	
distribution	

o Probability:	.10		
	 

3.6	PERSONNEL	EFFORT	REQUIREMENTS	 

Using	the	task	decomposition	table	from	3.2,	we	separated	the	major	tasks	into	the	rows	of	the	table	below	
with	the	smaller	sub-categories/tasks	placed	along	the	columns.	Using	our	best	judgement,	we	assigned	
rough	time	estimates	for	each	sub	task	using	the	assumption	that	a	single	team	member	or	two	would	be	
assigned	to	each	task.	As	the	project	is	still	underway,	the	times	are	subject	to	change.	

Hardware	
Bring-up	

Develop	Base	
Cases	

Introduce	
Resource	
Contention	

Introduce	
Interference	
Mitigation	

Unify	Tools	and	
Stressors	to	
One	Toolset	

Handoff	



Compatible	
Dev	Boards	
(3hrs)	

Cache	Base	
Case	

(5hrs)	

CPU	Cores		

(12hrs)	

Cache	Coloring	
(10hrs)	

Create	Open-
Source	
Repository	
(2hrs)	

Boeing	
Approval	

(1hr)	
Xen	Build	
(35hrs)	

Main	Memory	
Base	Case	
(5hrs)	

Cache	
Interference	

(16hrs)	

Cache	Locking	

(16hrs)	

Create	
Documentation
(4hrs)	

Iowa	State	
Approval	

(1hr)	
Verify	Xen	
(2hrs)	

I/O	Base	Case	
(5hrs)	

Main	Memory	
Bandwidth	

(12hrs)	

Memory	
bandwidth	
Reservation	
(14hrs)	

Improve	
Usability	

(8hrs)	

Determine	
Distribution	

(1hr)	
Xen	Scripts	
(2hrs)	

Collect	Base	
Case	Data	
(8hrs)	

I/O	Bandwidth	
(12hrs)	

I/O	Mitigation	
(14hrs)	

Automated	
Scripts	

(8hrs)	

	

Build	
Documents	
(4hrs)	

	 Collect	Data	

(8hrs)	

Collect	Data	
(8hrs)	

	 	

	 

3.7	OTHER	RESOURCE	REQUIREMENTS	 

The	main	requirement	for	this	project	is	an	ARM	development	board	that	supports	Xen	Hypervisor;	for	our	
project	that	is	a	RockPro64	accompanied	with	a	MicroSD	card	for	booting.	In	the	case	of	the	RockPro64,	a	
USB	to	TTL	converter	is	also	required	to	communicate	with	the	board	over	a	serial	connection.	This	was	
primarily	purchased	to	aid	with	client-to-team	debugging.	Along	with	the	board,	SD	card	and	USB	to	TTL	
converter,	a	computer	with	a	USB	type	A	is	also	required	to	interface	with	the	development	board.	


